Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shao-Wen Chen and Han-Dong Yin*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059,
People's Republic of China

Correspondence e-mail:
handongyin@Ictu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.029$
$w R$ factor $=0.083$
Data-to-parameter ratio $=14.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Dimethyl[2-oxido-1-benzaldehyde (2-thienylcarbonyl)hydrazonato]tin(IV)

In the title complex, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)\right]$, the Sn atom is in a distorted trigonal-bipyramidal configuration, with $\mathrm{Sn}-\mathrm{O}$ distances in the range 2.087 (3)-2.177 (3) \AA. The Schiff base molecule is coordinated to the Sn atom in a tridentate fashion via the azomethine N atom, the hydroxy O atom and the carbonyl O atom.

Comment

The structure of the title molecule, (I), in Fig. 1 shows that the complex is a monomer in which the Schiff base is coordinated to the Sn atom as a tridentate ligand via the azomethine N atom, the hydroxy O atom and the carbonyl O atom. The angles at Sn 1 confirm that the complex has a distorted trigonal-bipyramidal configuration (Table 1). The distortion around the Sn atom is a result of the constraints imposed by the $\mathrm{Sn} 1 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 1 / \mathrm{O} 1$ and $\mathrm{Sn} 1 / \mathrm{N} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{O} 2$ rings. The $\mathrm{Sn} 1-\mathrm{N} 1$ distance is 2.175 (3) \AA, close to the sum of the covalent radii (2.15 Å; Sanderson, 1967), indicating a strong $\mathrm{Sn}-\mathrm{N}$ interaction. The O atoms coordinate to the Sn atom with one shorter and one longer $\mathrm{Sn}-\mathrm{O}$ bonds. The $\mathrm{C}-\mathrm{N}-$ $\mathrm{N}-\mathrm{C}$ chain shows conjugation, as evidenced by the intermediate values for the bond lengths (Table 1). The dihedral angle between the benzene and thiophene rings is $9.3(3)^{\circ}$. A view of the crystal packing is shown in Fig. 2.

(I)

Experimental

The synthesis of (I) was carried out under a nitrogen atmosphere using standard Schlenk techniques. The Schiff base $(0.2216 \mathrm{~g}$, 1.0 mmol) was added to a mixture of ethanol and benzene ($1: 3 \mathrm{v} / \mathrm{v}$, $30 \mathrm{ml})$ with sodium ethoxide $(0.068 \mathrm{~g}, 1.0 \mathrm{mmol})$. The mixture was stirred for 0.5 h then $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}(0.2197 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added and the mixture stirred for 10 h under reflux. After cooling to room temperature, the mixture was filtered and evaporated to dryness. The resulting solid, (I), was then recrystallized from dichloromethanehexane ($3: 1 \mathrm{v} / \mathrm{v}$) (m.p. $509-510 \mathrm{~K}$). Analysis calculated for

Received 17 February 2006
Accepted 23 February 2006
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SSn}$: C 42.78, H 3.59, N 7.13\%; found: C 42.67, N 3.50, N 7.04\%.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)\right]$
$M_{r}=393.022$
Monocline, $\mathrm{C} 2 / \mathrm{l}$.
$a=25.644(5) \AA$
$b=9.701(2) \AA$
$c=14.051(3) \AA$
$\beta=120.594(2)^{\circ}$
$V=3009.1(11) \AA^{3}$
$Z=8$

$$
D_{x}=1.735 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)\right]$
$a=25.644$ (5) A
$b=9.701$ (2) A
$c=14.051$ (3) \AA
$V=3009.1(11) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
Cell parameters from 4148 reflections
$\theta=2.3-28.1^{\circ}$
$\mu=1.84 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.28 \times 0.26 \times 0.25 \mathrm{~mm}$

Data collection

Siemens SMART CCD area-

detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.627, T_{\text {max }}=0.656$
7625 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.083$
$S=1.00$
2656 reflections
182 parameters
H -atom parameters constrained

2656 independent reflections
2151 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-30 \rightarrow 27$
$k=-11 \rightarrow 7$
$l=-16 \rightarrow 16$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0477 P)^{2}\right.$
$+0.7212 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=0.59 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.68 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0043 (2)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Sn} 1-\mathrm{O} 2$	$2.087(3)$	$\mathrm{Sn} 1-\mathrm{O} 1$	$2.177(3)$
$\mathrm{Sn} 1-\mathrm{C} 14$	$2.102(4)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.293(4)$
$\mathrm{Sn} 1-\mathrm{C} 13$	$2.105(4)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.386(4)$
$\mathrm{Sn} 1-\mathrm{N} 1$	$2.175(3)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.309(4)$
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{C} 14$	$97.69(16)$	$\mathrm{C} 13-\mathrm{Sn} 1-\mathrm{N} 1$	$123.08(14)$
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{C} 13$	$94.77(15)$	$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{O} 1$	$155.62(10)$
$\mathrm{C} 14-\mathrm{Sn} 1-\mathrm{C} 13$	$127.60(18)$	$\mathrm{C} 14-\mathrm{Sn} 1-\mathrm{O} 1$	$94.76(16)$
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{N} 1$	$83.86(10)$	$\mathrm{C} 13-\mathrm{Sn} 1-\mathrm{O} 1$	$94.09(14)$
$\mathrm{C} 14-\mathrm{Sn} 1-\mathrm{N} 1$	$108.79(15)$	$\mathrm{N} 1-\mathrm{Sn} 1-\mathrm{O} 1$	$72.29(10)$

All H atoms were positioned geometrically and treated as riding on their parent atoms, with aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and methyl $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were set at $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms and at $1.2 U_{\text {eq }}(\mathrm{C})$ for the other H atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine

Figure 1
The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

Figure 2
The crystal packing of the title complex. H atoms have been omitted.
structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University,
China.

References

Sanderson, R. T. (1967). Inorganic Chemistry, p. 74. New York: Reinhold. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

